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The short-range behavior of correlation functions in a multicomponent plasma of charged ferrnions at 
T=O and metallic densities is considered. A known approximate expression for the contact value of the 
electron-electron correlation function in jelliurn, obtained by summing only ladder diagrams in Goldstone 
formula, is first generalized to many species and then improved by including screening effects. Comparison 
is made with quantal hypernetted-chain calculations on electron-positron mixture and with experimental 
data on positron-annihilation in metals. 
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rzte. 

I.  INTRODUCTION 

The knowledge of the short-range correlations is of great help to design approximate 
theories in order to describe many-body systems. In particular, the short-range 
correlations in the degenerate electron gas (“jellium”)’ have deserved much study2-’. 
Two important results are the exact Kimball-Niklasson expressions2s336 for the 
logarithmic derivative of the correlation function and the approximate formula of 
Yasuhara4 for the correlation function itself, both evaluated at contact. 

Tosi and collaborators” extended Kimbali-Niklasson expressions to multicompo- 
nent plasmas at degenerate regimes as well as at finite temperatures. In this paper, 
following Yasuhara arguments, we sum ladder interactions between particles of 
different species in order to find approximate expressions for the corresponding two- 
particle correlations at contact in the multicomponent “jellium”. Our treatment 
explicitly incorporates the coulombic screening in ladder expressions. 

We compare our results with those obtained from the quantal version of the 
hypernetted-chain approximation (FHNC)’ ’. We also use the contact correlation 
functions so obtained to evaluate the positron-annihilation rate in metals. 
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11. DEGENERATE MULTICOMPONENT PLASMA 

A .  Model 

We consider a system composed of N species of charged fermions at 
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empera ure 
T=O in a volume V .  We indicate with N ,  number of particles of species 
i ( i  = 1,2,. . . , N )  so that ni = N J V  denotes the corresponding number density. 
We represent a particle of type i as a point of mass mi and charge Z,e where e is 
the elemental electronic charge. 

The interaction Hamiltonian for this system is written in momentum space as 

where 6, = 
momentum 7j. 

and 6"; is the particle number operator for particles of species i and 

B. Correlation functions 

Our interest is on the short-range behavior of the pair correlation functions gi j ( r )  or, 
equivalently, on the long wave-number limit of the partial structure functions Sij(q). 

The functions gi j ( r )  and Sij(7) are Fourier transforms each other: 

From Eq. (2. l), we obtain the energy shift caused by the perturbative interaction: 

(2.3) 

where vij(q) denotes the pair potential in momentum space. This equation says that 
the partial structure factors are functional derivatives of the energy shift 

6AE 1 
= - (n ,  n j ) '"[Si j ( ; )  - Sij] 

' V i j ( 4 )  2 

Replacing Eq. (2.2) into the multicomponent version of Kimball's expression", we 
also obtain 

h2 
limgij(r) = 1 6ne2 ZiZj(ninj)"'pij q+ lim Cq4(Sij(G) - Sij)I (2.5) 
r-0 
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SHORT-RANGE CORRELATIONS IN PLASMAS 237 

where pij = mimj/(mi + mi). Equation (2.5) relates the short-range asymptotic behavior 
of gi j ( r )  to the long wavenumber behavior of Sij(?j'). 

C. Yasuhara formula for multicomponent systems 

By summing ladder diagrams in Goldstone formula for the energy shift", Yasuhara 
obtained an approximate expression for the large-q limit of the electron-electron 
structure factor in the electron gas. Yasuhara's expression yields, via the one compo- 
nent version of Eq. (2.5), the short range behavior of the jellium correlation function. 
Here we extend his arguments to multicomponent plasmas. 

The class of diagrams we consider in Goldstone formula, are those shown in 
Figure 1. As usual, the upward line denotes a particle and the downward a hole, while 
a wavy line denotes a coulomb interaction. 

The contribution of ladder diagrams to the energy shift can be written 

where 

Here 6 ;  = hzq2/2rni denotes the kinetic energy for particles of kind i and A ( x )  the 
corresponding Fermi distribution function: &(x) = 1 - O(k - ki) with O(x) the 
Heaviside step function and k i  = (37~'n~)' '~ the Fermi mome'ntum. 

From Eqs. (2.5), (2.4) and (2.6) we obtain, following the work of Y a ~ u h a r a ~ - ~ ,  
an approximate expression for the short-range limit of the ladder correlation 
functions 

I j 1 i i i I i 
Figure 1 A series of ladder diagrams for a particle of species i and other of species j .  
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where 

I i j ( q )  = I i j ( T l  = 0,x2 = a;q) 

and we have transformed the sums into integrals as it is usually done. 
We further replace the product of Heaviside step functions in the integrands of 

Eqs. (2.8) and (2.9):0(k -kk)O(k  - ki)+O(k - kg). 
momentum cut-off is k y  = Max(kk, ki). We choose for 

= k:rij 

where k; = Max(ki, k & .  . . , k:) and 

- 

Mathematically, the common 
k y ( i  # j )  the form 

(2.10) 

Here .xi = ni/n, (n, being defined by k; = ( 37r2n,)”3). 
In choosing the form (2.10) for k y  (i # j) we have taken into account that the main 

approximations involved into Eqs. (2.8) and (2.9) are: i) we neglect all but the ladder 
diagrams and ii) we consider that the two root particles are created with zero moment (xl =.x2 = a). Thus, although mathematically the common momentum cut-off should 
be k g  = Max(kL, k;), we can obtain, under different basis, a new value for k; that 
compensates in part for the approximation i). To this end, we analyze the long 
wavelength limit (k-+0) of the structure factors. Assuming a model of collective 
excitations (phonons and plasmons) we can obtain the dominant asymptotic behavior 
in the form 

1 4k‘j 1 1 
S,,(k) 3 k S >  S ;  
-=-F=- + - ( i  Zj) (2.12) 

where Sk(k) is the long wavelength limit of the structure factor for ideal fermions of 

type i: Sk(k) 5 --. Then we arrive to k$ = k; + k i  ( i  # j ) .  This result is consistent with 

the full HNC calculations of Lantto (reference 11). 
Since the approximation k ,  = k, = 0 overestimates the value of the parameter 

ky, we finally use an intermediate value ,/- ( i# j )  that verifies 
Max (kk, k i )  6 J(m d kk + k; ( i  # j ) .  This value for the momentum cut-off 
does fit the available theoretical and experimental data better than the other values. 

3 k  
4k;  
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SHORT-RANGE CORRELATIONS IN PLASMAS 239 

We reduce 4 and k with the unit k y  and Zij(q) and vij(q) with the unit vij(k$). Thus 
Eq. (2.9) yields 

where 

(2.13) 

(2.14) 

with A = ar,/n. The dimensionless parameter r, is defined: r, = (k&,a)-'; a = ( 4 / 9 ~ ) " ~  
and a. is the Bohr radius for particles of species e. 

The integral equation (2.13) is the same one Yasuhara obtained' for the one com- 
ponent jellium (electron gas). By reducing its kernel into a tractable form, he was able 
to obtain an approximate solution for Zij(q) that, introduced into the one component 
version of Eq. (2 .Q gives a closed analytical expression for the contact electron- 
electron pair correlation function in the electron gas. The generalization to multicom- 
ponent degenerate plasmas is just considered by the coupling parameters A,. 

D. Screening 

As it is evident from the previous calculations, the ladder approximation essentially 
takes into account coulombic interactions between independent pairs of particles. The 
interactions with all other particles are, in principle, neglected, although they do revel 
their presence through the existence of the Fermi spheres. 

When charges of opposite sign coexist, screening effects become very important and 
the interaction between any two particles will only be effective for momenta transfer 
larger than some momentum cut-off k,. 

From the observation of formulas (2.8) and (2.9) (or (2.13)), we conclude that, within 
the ladder approximation, and since we are interested in very large values of q, it is 
enough to include the screening condition only in Eq. (2.13). The improved integral 
equation now reads 

(2.15) 

As cut-off momentum k, we choose the Thomas-Fermi screening momentum. In 
reduced form we have 

Next, we divide the integration domain in Eq. (2.15): 

(2.16) 
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and note that, for q > k ,  + k,, the last integral can be approximated in the form’j 

(2.18) 

where s is a number included in order to account for the various errors introduced 
in our approximations. It can be utilized to minimize these errors, but, in principle, 
we presume it takes values between 0.1 and 0.2. 

Defining 

Jij(q) = lij(q)[l - 2~k:i.~~] (2.19) 

we see that Jij(q) verifies the same integral equation as lij(q) (Eq. (2.13)) but with 
a renormalized coupling parameter: 

where 

(2.20) 

(2.21) 

with ;Ci j  defined in Eq. (2.14). 

functions as functionals of Jij(q): 
Inclusion of the screening, as decribed above, into Eq. (2.8), gives the correlation 

An analytical approximate solution of the integral equation (2.20) is5 

where 

I-’ 
. , on! (n  ’ +2)! (Y q 

(4Zij)” 
“ 1  

F , ( X i j )  = c 

F*(q;xij) = 2 1 

. , on! (n  + l)!  

m 

[ 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

and hence 
- 

g i j ( r  = 0) = [Fl(i i j)JZ (2.26) 
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SHORT-RANGE CORRELATIONS IN PLASMAS 24 1 

This result corresponds to non-parallel spins. If we consider a paramagnetic plasma 
we have, in general, 

(2.27) 

where si denotes the spin of species i .  

111. APPLICATION TO POSITRON ELECTRON MIXTURES 

A .  Arbitrary positron concentrations 

In this section, we specialize the previous results to mixtures of electrons and positrons 
( i  = e, p ) .  In this case we have me = mp and Z ,  = - Z ,  = 1. We consider that electrons 
is the species with the largest density, so that x ,  = 1 and x p  = x = n,/n,,x ranging 
between 0 and 1. 

The same system was studied by Lantto" using the multicomponent Fermi 
hypernetted-chain (FHNC) theory together with approximate Euler-Lagrange equa- 
tions for the optimization of the trial wave functions. 

In Table I we compare our simple Yasuhara formula (with s = 0.12 in Eq. (2.21)) to 
the more laborious Lantto FHNC results. In general, the disagreement increases with 
the electron density and, for a given rsr with the positron concentrations. 

B. Positron-annihilation rate 

Finally, we have determined the positron-annihilation rate considering infinite dilu- 
tion for the positrons. This is equivalent to consider a single impurity particle (a 
positron) embedded into an electron gas, which is the model usually utilized for 
studying the annihilation of positrons in metalsI3 - I * .  

Table I Electron-positron correlation function at contact gep(r = 0) in positron-electron mixture as a func- 
tion of the electron density rs and positron concentration x. Between parenthesis, the FHNC results of 
Lantto (Ref. 1 I )  

x l r ,  1 2 3 4 5 

0.0 1.975 
(2.16) 

0.2 16 1.786 
(2.02) 

0.512 1.695 
(1.92) 

0.729 1.652 
(1.87) 

1 .o 1.612 
(1.81) 

3.930 
(4.06) 
3.184 
(3.70) 
2.872 
(3.41) 
2.730 
(3.23) 
2.601 
(3.08) 

7.713 
(7.40) 
5.555 
(6.49) 
4.785 
(5.81) 
4.449 
(5.42) 
4.148 
(5.05) 

14.779 
( I  3.2) 
9.385 
( 1  1.0) 
7.770 
(9.48) 
7.088 
(8.68) 
6.485 
(7.98) 

27.512 
(23.0) 
15.252 
(16.9) 
12.224 
(14.7) 
10.978 
(13.3) 
9.892 
(12.1) 
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The positron-annihilation rate is calculated from the electron-impurity correlation 
function at the origin using the expression” 

I ?  
1L 

I., = -qJr = 0) x 109[s- ‘1. 
rs  

The annihilation rate as a function of the electron density, obtained from 
Eqs. (3.1) and (2.27) (with x = 0), is shown in Figure 2. We compare our results 
with other theoretical treatments and also with experimental data reported by several 
authors. 

From the comparison we conclude that, within the metallic range of electronic 
densities, our results differ about 5% from the experimental data (and also from 
the theoretical results of Arponen and Pajanne that reproduce experiments rather 
well). At lower densities, they show the same deficiency as all those theories based 
on similar ladder approximations, namely a typical increase of A, for values of rs 
beyond the metallic range. In favor of our theoretical expressions we remark its 
simplicity. 

Figure2 Positron-annihilation rate in jellium as a function of the electron density. The solid line 
represents the results of the present work. The dashed line and the dotted-dashed line are the results of 
Arponen and Pajanne (Ref. 18) and of Lantto (Ref. l l) ,  respectively, and are reproduced, as well as the 
experimental data, from Figure 5 of Ref. 11. 
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SHORT-RANGE CORRELATIONS IN PLASMAS 243 

IV. CONCLUSIONS 

In this work we have extended the arguments Yasuhara used for the contact electron- 
electron correlation in the degenerate electron gas, to multicomponent systems of 
degenerate fermions. The main approximation involved, namely to consider only 
ladder diagrams in Goldstone formula, is at all unreasonable since our interest is on 
the pair correlation functions for r = 0 .  At relatively low densities (i.e., at metallic 
densities), the contact correlations between two particles is dominated by the direct 
Coulomb interaction, independently of the remaining particles. Under these cir- 
cumstances, the contribution of ladder diagrams to the contact correlations is 
fundamental. 
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